Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
1.
J Ethnopharmacol ; 330: 118229, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-38670403

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Thymus quinquecostatus Celak., a member of thymus genus in Lamiaceae family, has been used as a folk medicine for relieving exterior syndrome and alleviating pain in China. The polyphenol-rich fraction (PRF) derived from Thymus quinquecostatus Celak. had been validated that it can protect cerebral ischemia-reperfusion injury (CIRI) by activating Keap1/Nrf2/HO-1 signaling pathway. AIM OF THIS STUDY: To explore effective components and their pharmacokinetic and pharmacodynamic characteristics as well as possible mechanisms of PRF in treating CIRI. MATERIALS AND METHODS: Normal treated group (NTG) and tMCAO model treated group (MTG) rats were administrated PRF intragastrically. The prototype components and metabolites of PRF in plasma and brain were analyzed by the UPLC-Q-Exactive Orbitrap MSn method. Subsequently, the pharmacokinetics properties of indicative components were performed based on HPLC-QQQ-MS/MS. SOD and LDH activities were determined to study the pharmacodynamic (PD) properties of PRF. The PK-PD relationship of PRF was constructed. In addition, the effect of PRF on endogenous metabolites in plasma and brain was investigated using metabolomic method. RESULTS: Salvianic acid A, caffeic acid, rosmarinic acid, scutellarin, and apigenin-7-O-glucuronide were selected as indicative components based on metabolic analysis. The non-compartmental parameters were calculated for indicative components in plasma and brain of NTG and MTG rats. Furthermore, single-component and multi-component PK-PD modeling involved Emax, Imax PD models for effect indexes were fitted as well as ANN models were established, which indicated that these components can work together to regulate SOD and LDH activities in plasma and SOD activity in brain tissue to improve CIRI. Additionally, PRF may ameliorate CIRI by regulating the disorder of endogenous metabolites in lipid metabolism, amino acid metabolism, and purine metabolism pathways in vivo, among which lipid metabolism and purine metabolism are closely related to oxidative stress. CONCLUSION: The PK-PD properties of effect substances and mechanisms of PRF anti-CIRI were further elaborated. The findings provide a convincing foundation for the application of T. quinquecostatus Celak. in the maintenance of human health disorders.


Subject(s)
Metabolomics , Polyphenols , Rats, Sprague-Dawley , Reperfusion Injury , Thymus Plant , Animals , Male , Reperfusion Injury/drug therapy , Reperfusion Injury/metabolism , Thymus Plant/chemistry , Polyphenols/pharmacology , Polyphenols/pharmacokinetics , Rats , Infarction, Middle Cerebral Artery/drug therapy , Plant Extracts/pharmacology , Plant Extracts/pharmacokinetics , Brain/metabolism , Brain/drug effects , Disease Models, Animal , Brain Ischemia/drug therapy , Neuroprotective Agents/pharmacology , Neuroprotective Agents/pharmacokinetics , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/pharmacokinetics
2.
J Ethnopharmacol ; 328: 118058, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38513778

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Baoyuan Decoction (BYD) was initially recorded in the classic of "Bo Ai Xin Jian" in the Ming dynasty. It is traditionally used for treating weakness and cowardice, and deficiency of vital energy. In researches related to anti-fatigue effects, the reciprocal regulation of AMPK and circadian clocks likely plays an important role in anti-fatigue mechanism, while it has not yet been revealed. Therefore, we elucidated the anti-fatigue mechanism of BYD through AMPK/CRY2/PER1 pathway. AIM OF THE STUDY: To investigate the effect and mechanism of BYD in reducing fatigue, using pharmacodynamics, network pharmacology and transcriptomics through the AMPK/CRY2/PER1 signaling pathway. MATERIALS AND METHODS: Firstly, the chemical constituents of BYD were qualitatively identified by UHPLC-Q-Exactive Orbitrap/MS, establishing a comprehensive strategy with an in-house library, Xcalibur software and Pubchem combined. Secondly, a Na2SO3-induced fatigue model and 2,2'-Azobis (2-methylpropionamidine) dihydrochloride (AAPH)-induced oxidative stress model were developed to evaluate the anti-fatigue and anti-oxidant activities of BYD using AB zebrafish. The anti-inflammatory activity of BYD was evaluated using CuSO4-induced and tail cutting-induced Tg (lyz: dsRed) transgenic zebrafish inflammation models. Then, target screening was performed by Swiss ADME, GeneCards, OMIM and DrugBank databases, the network was constructed using Cytoscape 3.9.0. Transcriptome and network pharmacology technology were used to investigate the related signaling pathways and potential mechanisms after treatment with BYD, which were verified by real-time quantitative PCR (RT-qPCR). RESULTS: In total, 114 compounds from the water extract of BYD were identified as major compounds. Na2SO3-induced fatigue model and AAPH-induced oxidative stress model indicated that BYD has significant anti-fatigue and antioxidant effects. Meanwhile, BYD showed significant anti-inflammatory effects on CuSO4-induced and tail cutting-induced zebrafish inflammation models. The KEGG result of network pharmacology showed that the anti-fatigue function of BYD was mainly effected through AMPK signaling pathway. Besides, transcriptome analysis indicated that the circadian rhythm, AMPK and IL-17 signaling pathways were recommended as the main pathways related to the anti-fatigue effect of BYD. The RT-qPCR results showed that compared with a model control group, the treatment of BYD significantly elevated the expression mRNA of AMPK, CRY2 and PER1. CONCLUSION: Herein, we identified 114 chemical constituents of BYD, performed zebrafish activity validation, while demonstrated that BYD can relieve fatigue by AMPK/CRY2/PER1 signaling pathway through network pharmacology and transcriptome.


Subject(s)
AMP-Activated Protein Kinases , Amidines , Drugs, Chinese Herbal , Animals , Zebrafish , Oxidative Stress , Fatigue/drug therapy , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Inflammation/drug therapy , Antioxidants , Signal Transduction , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use
3.
ACS Nano ; 18(4): 3073-3086, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38227475

ABSTRACT

Mesenchymal stem cell (MSC)-based cardiac patches are envisioned to be a promising treatment option for patients with myocardial infarction. However, their therapeutic efficacy and duration are hampered due to their limited retention on the epicardium. We engineered a scaffold-free MSC sheet with an inherent ability to migrate into the infarcted myocardium, a strategy enabled by actively establishing a sustained intracellular hypoxic environment through the endocytosis of our FDA-approved ferumoxytol. This iron oxide nanoparticle stabilized hypoxia-induced factor-1α, triggering upregulation of the CXC chemokine receptor and subsequent MSC chemotaxis. Thus, MSCs integrated into 2/3 depth of the left ventricular anterior wall in a rat model of acute myocardial infarction and persisted for at least 28 days. This led to spatiotemporal delivery of paracrine factors by MSCs, enhancing cardiac regeneration and function. Ferumoxytol also facilitated the noninvasive MRI tracking of implanted MSCs. Our approach introduces a strategy for mobilizing MSC migration, holding promise for rapid clinical translation in myocardial infarction treatment.


Subject(s)
Mesenchymal Stem Cell Transplantation , Myocardial Infarction , Rats , Humans , Animals , Ferrosoferric Oxide , Rats, Sprague-Dawley , Heart/diagnostic imaging , Myocardial Infarction/drug therapy , Myocardium
4.
Nature ; 624(7991): 295-302, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38092907

ABSTRACT

Connecting different electronic devices is usually straightforward because they have paired, standardized interfaces, in which the shapes and sizes match each other perfectly. Tissue-electronics interfaces, however, cannot be standardized, because tissues are soft1-3 and have arbitrary shapes and sizes4-6. Shape-adaptive wrapping and covering around irregularly sized and shaped objects have been achieved using heat-shrink films because they can contract largely and rapidly when heated7. However, these materials are unsuitable for biological applications because they are usually much harder than tissues and contract at temperatures higher than 90 °C (refs. 8,9). Therefore, it is challenging to prepare stimuli-responsive films with large and rapid contractions for which the stimuli and mechanical properties are compatible with vulnerable tissues and electronic integration processes. Here, inspired by spider silk10-12, we designed water-responsive supercontractile polymer films composed of poly(ethylene oxide) and poly(ethylene glycol)-α-cyclodextrin inclusion complex, which are initially dry, flexible and stable under ambient conditions, contract by more than 50% of their original length within seconds (about 30% per second) after wetting and become soft (about 100 kPa) and stretchable (around 600%) hydrogel thin films thereafter. This supercontraction is attributed to the aligned microporous hierarchical structures of the films, which also facilitate electronic integration. We used this film to fabricate shape-adaptive electrode arrays that simplify the implantation procedure through supercontraction and conformally wrap around nerves, muscles and hearts of different sizes when wetted for in vivo nerve stimulation and electrophysiological signal recording. This study demonstrates that this water-responsive material can play an important part in shaping the next-generation tissue-electronics interfaces as well as broadening the biomedical application of shape-adaptive materials.


Subject(s)
Electrophysiology , Polymers , Water , Animals , alpha-Cyclodextrins/chemistry , Electrodes , Electrophysiology/instrumentation , Electrophysiology/methods , Electrophysiology/trends , Heart , Muscles , Polyethylene Glycols/chemistry , Polymers/chemistry , Silk/chemistry , Spiders , Water/chemistry , Hydrogels/chemistry , Electronics/instrumentation , Electronics/methods , Electronics/trends
5.
Zookeys ; 1186: 25-46, 2023.
Article in English | MEDLINE | ID: mdl-38107661

ABSTRACT

Asian shrew moles, genus Uropsilus, are the most primitive members of family Talpidae. They are distributed mainly in southwestern China and adjacent Bhutan, Myanmar, and Vietnam. In June 2022, we collected five specimens of Uropsilus from Mount Huanggang, Jiangxi Province, eastern China, which is the highest peak of the Wuyi Mountains. We sequenced two mitochondrial (CYT B and 12S rRNA) and three nuclear (PLCB4, RAG1, and RAG2) genes to estimate the phylogenetic relationship of the five shrew moles. We also compared their morphology with recognized species within the genus. Our results show that these specimens collected from Mount Huanggang differ from all named species in Uropsilus. We formally describe the species here as Uropsilushuanggangensissp. nov. Morphologically, the new species is distinguishable from the other Uropsilus species by the combination of dark chocolate-brown pelage, long snout, enlarged first upper incisor, similarly sized lacrimal and infraorbital foramens, and the curved and sickle-like coronoid process. The genetic distances of the cytochrome b (CYT B) gene between U.huanggangensis and other recognized Uropsilus species ranged between 9.3% and 16.4%. The new species is geographically distant from other species in the genus and is the easternmost record of the Uropsilus. The divergence time of U.huanggangensis was estimated to be the late Pliocene (1.92 Ma, 95% CI = 0.88-2.99).

6.
Chem Commun (Camb) ; 59(91): 13595-13598, 2023 Nov 14.
Article in English | MEDLINE | ID: mdl-37888889

ABSTRACT

A convenient strategy for fabricating a wearable sensor with favorable durability and sensitivity is reported. This approach exploits the reconstructed hydrogen bonds within the thermoplastic polyurethane (TPU) during the heating evaporation of metal to form robust welding of the fibers in the substrate. The sensor can steadily monitor pulse waves and facilitate real-time human-machine interaction.

7.
Bioorg Chem ; 140: 106790, 2023 11.
Article in English | MEDLINE | ID: mdl-37604095

ABSTRACT

Thymus quinquecostatus Celak. is an edible herb that widely cultivated in Asia and possesses hepatoprotective activity, but the underlying non-volatile components of this protective activity are not well studied. In this study, combining molecular networking visualization and bioassay-guided fractionation strategies, a pair of novel skeleton diterpenoid enantiomers, (+)- and (-)-thymutatusone A [(+)- and (-)-1], along with one new and one known biogenetically related compounds (2-3) and 16 other known compounds (4-19), were identified from T. quinquecostatus. Their structures were exhaustively characterized by comprehensive spectroscopic data, X-ray diffraction analysis, and ECD calculations. Compounds (±)-1, (-)-1, and (+)-1, with a rare tricyclo [7.3.1.02,7] tridecane skeleton, exhibited potent hepatoprotective activity in HepG2 cells injured by acetaminophen, with EC50 values of 11.5 ± 2.8, 8.4 ± 1.9, and 12.2 ± 0.3 µM respectively. They were more potent than positive drug bifendate (EC50 15.2 ± 1.3). Further, the underlying mechanism for the hepatoprotective activity of compound (-)-1 related to activating the Nrf 2 signaling pathway. What's more, molecular docking and molecular dynamics simulation analysis showed that compound (-)-1 could dock with the active site of Nrf 2 protein and form a stable system through hydrogen bonding. These results suggest that T. quinquecostatus can be used as a valuable source of hepatoprotective activity compounds.


Subject(s)
Acetaminophen , Molecular Dynamics Simulation , Molecular Docking Simulation , Biological Assay , Crystallography, X-Ray , Radiopharmaceuticals
8.
ACS Sens ; 8(7): 2691-2701, 2023 07 28.
Article in English | MEDLINE | ID: mdl-37262351

ABSTRACT

Contact lens sensors provide a noninvasive approach for intraocular pressure (IOP) monitoring in patients with glaucoma. Accurate measurement of this imperceptible pressure variation requires highly sensitive sensors in the absence of simultaneously amplifying IOP signal and blinking-induced noise. However, current noise-reduction methods rely on external filter circuits, which thicken contact lenses and reduce signal quality. Here, we introduce a contact lens strain sensor with an anti-jamming ability by utilizing a self-lubricating layer to reduce the coefficient of friction (COF) to remove the interference from the tangential force. The sensor achieves exceptionally high sensitivity due to the strain concentration layout and the confined occurrence of sympatric microcracks. The animal tests prove our lens can accurately detect IOP safely and reliably.


Subject(s)
Contact Lenses , Glaucoma , Animals , Intraocular Pressure , Tonometry, Ocular/methods , Glaucoma/diagnosis
9.
J Pharm Biomed Anal ; 233: 115474, 2023 Sep 05.
Article in English | MEDLINE | ID: mdl-37229798

ABSTRACT

MSTG-A, MSTG-B and Gualtherin are three natural methyl salicylate glycosides isolated from Dianbaizhu (Gaultheria leucocarpa var. yunnanensis), which is a traditional Chinese folk medicine widely used for the treatment of rheumatoid arthritis. They share the same mother nucleus with aspirin, exhibit similar activity and have fewer side effects. In this study, the incubation of MSTG-A, MSTG-B and gaultherin monomers with human fecal microbiota (HFM), microbiota in 4 intestinal segments (jejunum, ileum, cecal, and colon) and feces of rats in vitro was carried out to comprehensively and meticulously understand their metabolism by gut microbiota (GM) in the body. MSTG-A, MSTG-B and Gualtherin were hydrolyzed by GM to lose glycosyl moieties. The quantity and position of xylosyl moiety significantly affected the rate and extent of the three components being metabolized. The -glc-xyl fragments of these three components could not be hydrolyzed and broken by GM. In addition, the existence of terminal xylosyl moiety prolonged the degradation time. Different results appeared in metabolism of the three monomers by microbiota of different intestinal segments and feces due to the alternation of the species and abundance of microorganisms along the longitudinal axis of the intestinal lumen. Cecal microbiota had strongest degradation ability on these three components. The metabolic details of GM on MSTG-A, MSTG-B and Gualtherin were clarified in this study, providing data support and basis for clinical development and bioavailability improvement.


Subject(s)
Gastrointestinal Microbiome , Glycosides , Rats , Humans , Animals , Aspirin , Feces , Biotransformation
10.
Front Immunol ; 14: 1131933, 2023.
Article in English | MEDLINE | ID: mdl-36936921

ABSTRACT

Introduction: Rheumatoid arthritis (RA) is a multifactorial autoimmune disease. Recently, growing evidence demonstrates that gut microbiota (GM) plays an important role in RA. But so far, no bibliometric studies pertaining to GM in RA have ever been published. This study attempts to depict the knowledge framework in this field from a holistic and systematic perspective based on the bibliometric analysis. Methods: Literature related to the involvement of GM in RA was searched and picked from the Web of Science Core Collection (WOSCC) database. The annual output, cooperation, hotspots, research status and development trend of this field were analyzed by bibliometric software (VOSviewer and Bibliometricx). Results: 255 original research articles and 204 reviews were included in the analysis. The articles in this field that can be retrieved in WOSCC were first published in 2004 and increased year by year since then. 2013 is a growth explosion point. China and the United States are the countries with the most contributions, and Harvard University is the affiliation with the most output. Frontiers in Immunology (total citations = 603) is the journal with the most publications and the fastest growth rate. eLife is the journal with the most citations (total citations = 1248). Scher, Jose U. and Taneja, Veena are the most productive and cited authors. The research in this field is mainly distributed in the evidence, mechanism and practical application of GM participating in RA through the analysis of keywords and documents. There is sufficient evidence to prove the close relationship between GM and RA, which lays the foundation for this field. This extended two colorful and tender branches of mechanism research and application exploration, which have made some achievements but still have broad exploration space. Recently, the keywords "metabolites", "metabolomics", "acid", "b cells", "balance", "treg cells", "probiotic supplementation" appeared most frequently, which tells us that research on the mechanism of GM participating in RA and exploration of its application are the hotspots in recent years. Discussion: Taken together, these results provide a data-based and objective introduction to the GM participating in RA, giving readers a valuable reference to help guide future research.


Subject(s)
Arthritis, Rheumatoid , Autoimmune Diseases , Gastrointestinal Microbiome , Humans , B-Lymphocytes , Bibliometrics
11.
ACS Nano ; 17(3): 2134-2147, 2023 02 14.
Article in English | MEDLINE | ID: mdl-36688948

ABSTRACT

A tactile sensor needs to perceive static pressures and dynamic forces in real-time with high accuracy for early diagnosis of diseases and development of intelligent medical prosthetics. However, biomechanical and external mechanical signals are always aliased (including variable physiological and pathological events and motion artifacts), bringing great challenges to precise identification of the signals of interest (SOI). Although the existing signal segmentation methods can extract SOI and remove artifacts by blind source separation and/or additional filters, they may restrict the recognizable patterns of the device, and even cause signal distortion. Herein, an in-memory tactile sensor (IMT) with a dynamically adjustable steep-slope region (SSR) and nanocavity-induced nonvolatility (retention time >1000 s) is proposed on the basis of a machano-gated transistor, which directly transduces the tactile stimuli to various dope states of the channel. The programmable SSR endows the sensor with a critical window of responsiveness, realizing the perception of signals on demand. Owing to the nonvolatility of the sensor, the mapping of mechanical cues with high spatiotemporal accuracy and associative learning between two physical inputs are realized, contributing to the accurate assessment of the tissue health status and ultralow-power (about 25.1 µW) identification of an occasionally occurring tremor.


Subject(s)
Artifacts , Time Perception , Touch/physiology , Pressure , Motion
12.
J Ethnopharmacol ; 304: 116049, 2023 Mar 25.
Article in English | MEDLINE | ID: mdl-36529251

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Scutellaria baicalensis (SB) is a traditional Chinese medicine (TCM). In the clinical application of TCM, SB has been divided into two specifications (Ziqin and Kuqin) for a long time. At present, the Chinese Pharmacopoeia Commission no longer distinguishes between the two. However, the two specifications of medicinal materials and pieces are still in circulation in the market. AIM OF THE STUDY: This work aimed at investigating the similarities and differences between Ziqin and Kuqin in anti-inflammatory, analgesic, and antioxidant activities and their material basis. It will provide a new angle for relevant regulations to formulate the specifications and standards of SB. MATERIALS AND METHODS: Here we investigated the similarities and differences between Ziqin and Kuqin in anti-inflammatory, analgesic, and antioxidant activities related to four zebrafish models and three chemical tests. The chemical fingerprints of SB (Ziqin and Kuqin) were profiled by HPLC. Meanwhile, UHPLC-Q-TOF/MS was used to identify the chemical constituents of Ziqin and Kuqin. The main effect-related compounds of SB, Ziqin, and Kuqin were screened out by spectrum-effect relationship. Finally, six monomeric compounds were validated experimentally using the zebrafish inflammation model induced by CuSO4. RESULTS: Both Ziqin and Kuqin had significant anti-inflammatory, analgesic, and antioxidant activities. Kuqin had better anti-inflammatory and analgesic activities, while Ziqin had better antioxidant activity. HPLC fingerprint and UHPLC-Q-TOF/MS evaluation showed that the chemical composition types and main components of Ziqin and Kuqin were basically the same, while the contents and proportions of chemical components in Ziqin and Kuqin were different. By spectrum-effect relationship, compounds X1, X2 (luteoloside), X3, X4 (baicalin), X6 (wogonoside), X7 (baicalein), X8 (wogonin), and X9 (oroxylin A) were the same active chemical constituents of Ziqin and Kuqin. The core components of anti-inflammatory and analgesia activities in Kuqin were compounds X1, X2, X3, X5, X6, X7, X8, and X9. The antioxidant core active components of Ziqin were compounds X2, X3, X4, X6, X7, and X9. Among them, luteoloside, baicalin, wogonoside, baicalein, wogonin, and oroxylin A were validated successfully with good anti-inflammatory effects. CONCLUSIONS: This study revealed that Ziqin and kuqin have high similarity in chemical composition, but their proportions and active core components are different. This may be one of the main reasons why they have the same activity but different activity trends. These findings will help to improve the understanding of the different clinical applications of Ziqin and Kuqin, and provide a reference for the formulation of quality standards and their further research.


Subject(s)
Antioxidants , Drugs, Chinese Herbal , Animals , Antioxidants/pharmacology , Zebrafish , Drugs, Chinese Herbal/chemistry , Scutellaria baicalensis/chemistry , Chromatography, High Pressure Liquid , Anti-Inflammatory Agents, Non-Steroidal , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use
13.
Front Pharmacol ; 13: 1027687, 2022.
Article in English | MEDLINE | ID: mdl-36561345

ABSTRACT

Objective: Curcumae Rhizoma-Sparganii Rhizoma (CR-SR) is a traditional botanical drug pair that can promote blood circulation, remove blood stasis, and treat tumors in clinics. The aim of the present study was to investigate the therapeutic material basis and potential mechanisms of CR-SR, CR, and SR for the treatment of liver cancer. Method: The chemical profile analyses of CR-SR, CR, and SR were performed by molecular networking and UPLC-LTQ-Orbitrap MSn. The anti-liver cancer activities of CR-SR, CR, and SR were assessed by using a zebrafish xenograft model in vivo for the first time and detected by the HepG2 cell model in vitro. Combining the network analysis and molecular docking, real-time quantitative polymerase chain reaction (RT-qPCR) experiments were undertaken to further explore the mechanisms of CR-SR, CR, and SR for the treatment of liver cancer. Results: In total, 65 components were identified in CR-SR, CR, and SR. Based on the clusters of molecular networking, a total of 12 novel diarylheptanoids were identified from CR-SR and CR. By combining our results with information from the literature, 32 sesquiterpenoids and 21 cyclic dipeptides were identified from CR-SR, CR, and SR. The anti-liver cancer activities were observed in both the drug pair and the single botanical drugs in vitro and in vivo, and the order of activity was CR-SR > CR > SR. They could downregulate the expression of proto-oncogene tyrosine-protein kinase Src (SRC), epidermal growth factor receptor (EGFR), estrogen receptor-α (ESR1), prostaglandin endoperoxide synthase 2 (PTGS2), and amyloid precursor protein (APP). Conclusion: Taken together, the present study provided an experimental basis for the therapeutic material basis and potential molecular mechanisms of CR-SR, CR, and SR. This study provided a novel insight for objective clinical treatment of liver cancer.

14.
Animals (Basel) ; 12(15)2022 Jul 27.
Article in English | MEDLINE | ID: mdl-35953902

ABSTRACT

Understanding the mechanisms influencing patterns and processes of biological diversity is critical to protecting biodiversity, particularly in species-rich ecosystems such as mountains. Even so, there is limited knowledge of biodiversity patterns and processes in the mountains of eastern China, especially about small mammals. In this study, we examined the taxonomic, functional, and phylogenetic diversity of small mammal distribution and community structure along the elevational gradient of Qingliang Mountain, eastern China. We then evaluated how they are influenced by space (area and mid-domain effect (MDE)), environment (temperature, precipitation, and normalized difference vegetation index (NDVI)), and human disturbance. The results showed hump-shaped patterns of taxonomic and phylogenetic diversity along elevation gradients, peaking at 1000 m, unlike functional diversity, which peaked at lower elevations (600 m). The mean pairwise distance and mean nearest taxon distance of functional and phylogenetic variance (MFD and MPD, respectively) were also incongruent. The MFD and MPD showed hump-shaped patterns along elevations; however, unlike MFD, which peaked at lower elevations (600 m), MPD peaked at higher elevations (1200 m). The mean nearest functional taxon distance (MNFD) decreased, while the mean nearest phylogenetic taxon distance (MNTD) increased along the elevation gradient. The higher elevations were functionally more clustered, while the lower elevations were phylogenetically more clustered, suggesting that environmental filtering for traits was stronger at higher elevations. In comparison, phylogenetic conservatism of ecological niches had a stronger influence at lower elevations. The diversity and community structure indices were inconsistently explained, with human disturbance and MDE accounting for the biggest proportions of the model-explained variances. Overall, the results confirm that environmental filtering and human disturbance significantly influence small mammals' diversity and community structure. These findings also emphasize the need for increased conservation efforts in the middle and lower elevation regions of Qingliang Mountain.

15.
Am J Chin Med ; 50(2): 471-509, 2022.
Article in English | MEDLINE | ID: mdl-35168475

ABSTRACT

Dendrobium polysaccharides (DPSs) have aroused people's increasing attention in recent years as a result of their outstanding edible and medicinal values and non-toxic property. This review systematically summarized recent progress in the different preparation techniques, structural characteristics, modification, various pharmacological activities and molecular mechanisms, structure-activity relationships, and current industrial applications in the medicinal, food, and cosmetics fields of DPSs. Additionally, some recommendations for future investigations were provided. A variety of methods were applied for the extraction and purification of DPSs. They possessed primary structures (e.g., glucomannan, rhamnogalacturonan I type pectin, heteroxylan, and galactoglucan) and conformational structures (e.g., random coil, rod, globular, and a slight triple-helical). And different molecular weights, monosaccharide compositions, linkage types, and modifications could largely affect DPSs' bioactivities (e.g., immunomodulatory, anti-diabetic, hepatoprotective, gastrointestinal protective, antitumor, anti-inflammatory, and anti-oxidant activities). It was worth mentioning that DPSs were significant pharmaceutical remedies and therapeutic supplements especially due to their strong immunity enhancement abilities. We hope that this review will lay a solid foundation for further development and applications of Dendrobium polysaccharides.


Subject(s)
Dendrobium , Anti-Inflammatory Agents , Antioxidants/pharmacology , Dendrobium/chemistry , Humans , Polysaccharides
16.
Eur J Nutr ; 61(1): 115-126, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34215920

ABSTRACT

PURPOSE: Alcoholic liver disease (ALD) is a major health issue globally. In addition to pharmacotherapy, dietary support is also regarded as reliable strategy for ALD management. As a widely distributed natural constituent within edible plants, the present study aims to investigate the hepatoprotective effects of ursolic acid (UA) against ALD and also to deepen insights into the underlying targets and mechanisms comprehensively. METHODS: The hepatoprotective activity of UA against chronic alcohol-induced liver injury was investigated on Lieber-DeCarli liquid diet-based mouse model. In-depth RNA-seq transcriptomics and TMT-based proteomics analyses were conducted in parallel. Data integration as well as bioinformatics analysis were also performed to unravel the targets and mechanisms associated with the hepatoprotective activity of UA intake against alcoholic liver injury comprehensively. RESULTS: The serum biomarkers and pathological characteristics indicated the hepatoprotective effects of UA intake on alcoholic liver injury. 567 target genes and 377 target proteins related to the hepatoprotective activity of UA were identified in transcriptomics and proteomics analysis respectively, most of which were associated with function of cellular process, cell part and binding. After data integration, 56 co-regulated targets, including ADH4, CYP450 enzymes, NQO1, apolipoproteins, glutathione-S-transferase, etc. which were consistently modulated on both mRNA and protein levels were identified. These co-regulated targets were found to be correlated with 70 KEGG pathways led by carcinogenesis, retinol metabolism and CYP450 metabolism pathways. CONCLUSION: UA intake ameliorated chronic alcohol-induced liver injury. Given the role of the co-regulated targets in ALD and the bioinformatics analysis results, CYP450-, glutathione and redox homeostasis-dependent antioxidation, promotion of lipid transport, and restoration of ethanol metabolic capacity are the potentially underlying mechanisms. This information will further deepen our insights into the hepatoprotective effects of UA-rich edible plants, and provide us valuable instruction for ALD management.


Subject(s)
Alcoholism , Liver Diseases, Alcoholic , Triterpenes , Alcohol Drinking , Animals , Liver , Liver Diseases, Alcoholic/drug therapy , Liver Diseases, Alcoholic/prevention & control , Mice , Ursolic Acid
17.
Mini Rev Med Chem ; 22(2): 322-354, 2022.
Article in English | MEDLINE | ID: mdl-34036917

ABSTRACT

BACKGROUND: Flavonoid glucuronides are a kind of natural products presenting a flavone linked directly with one or several glucuronides through O-glycoside bond. They had become of interest in natural product research in the past decades for their antioxidant, anti-inflammatory, and antibacteria activities. In particular, the compound breviscapine has a notable effect on cardiocerebrovascular diseases. Several other compounds even have antitumor activity. METHODS: Through searching the database and reading a large number of documents, we summarized the related findings of flavonoid glucuronides. RESULTS: We summarized 211 naturally occurring flavonoid glucuronides in 119 references with their chemical structures, biological activities, and metabolism. A total of 220 references from 1953 to 2020 were cited in this paper according to literature databases such as CNKI, Weipu, Wanfang data, Elsevier, Springer, Wiley, NCBI, PubMed, EmBase, etc. Conclusion: Flavonoid glucuronides are a class of compounds with various chemical structures and a diverse range of biological activities. They are thought to be potential candidates for drug discovery, but the specific study on their mechanisms is still limited until now. We hope this article can provide references for natural product researchers and draw more attention to flavonoid glucuronides' biological activities and mechanisms.


Subject(s)
Flavonoids , Glucuronides , Anti-Inflammatory Agents/chemistry , Antioxidants/chemistry , Antioxidants/pharmacology , Flavonoids/chemistry , Flavonoids/pharmacology , Glucuronides/metabolism , Glucuronides/pharmacology , Phytochemicals/chemistry , Plant Extracts/chemistry
18.
Front Pharmacol ; 12: 704040, 2021.
Article in English | MEDLINE | ID: mdl-34671253

ABSTRACT

Background: Dianbaizhu (Gaultheria leucocarpa var. yunnanensis), a traditional Chinese/ethnic medicine (TC/EM), has been used to treat rheumatoid arthritis (RA) for a long time. The anti-rheumatic arthritis fraction (ARF) of G. yunnanensis has significant anti-inflammatory and analgesic activities and is mainly composed of methyl salicylate glycosides, flavonoids, organic acids, and others. The effective ingredients and rudimentary mechanism of ARF remedying RA have not been elucidated to date. Purpose: The aim of the present study is to give an insight into the effective components and mechanisms of Dianbaizhu in ameliorating RA, based on the estimation of the absorption, distribution, metabolism, and excretion (ADME) properties, analysis of network pharmacology, and in vivo and in vitro validations. Study design and methods: The IL-1ß-induced human fibroblast-like synoviocytes of RA (HFLS-RA) model and adjuvant-induced arthritis in the rat model were adopted to assess the anti-RA effect of ARF. The components in ARF were identified by using UHPLC-LTQ-Orbitrap-MSn. The quantitative structure-activity relationship (QSAR) models were developed by using five machine learning algorithms, alone or in combination with genetic algorithms for predicting the ADME properties of ARF. The molecular networks and pathways presumably referring to the therapy of ARF on RA were yielded by using common databases and visible software, and the experimental validations of the key targets conducted in vitro. Results: ARF effectively relieved RA in vivo and in vitro. The five optimized QSAR models that were developed showed robustness and predictive ability. The characterized 48 components in ARF had good biological potency. Four key signaling pathways were obtained, which were related to both cytokine signaling and cell immune response. ARF suppressed IL-1ß-induced expression of EGFR, MMP 9, IL2, MAPK14, and KDR in the HFLS-RA . Conclusions: ARF has good druggability and high exploitation potential. Methyl salicylate glycosides and flavonoids play essential roles in attuning RA. ARF may partially attenuate RA by regulating the expression of multi-targets in the inflammation-immune system. These provide valuable information to rationalize ARF and other TC/EMs in the treatment of RA.

19.
Food Funct ; 12(20): 10281-10290, 2021 Oct 19.
Article in English | MEDLINE | ID: mdl-34549762

ABSTRACT

Alcoholic liver disease (ALD) is a major health issue globally due to the consumption of alcoholic beverages. Thymus quinquecostatus Celak is a food additive and an edible herb that is widely used in Asia and possesses hepatoprotective activity, but the underlying mechanisms behind this protective activity are not completely understood. The purpose of this study was to investigate the hepatoprotective effects of Thymus quinquecostatus Celak extract (TQE) against ALD as well as the underlying mechanism based on gut microbiota and the gut-liver axis. TQE supplementation markedly alleviated chronic alcohol-induced liver injury in C57 mice. TQE also ameliorated gut barrier dysfunction induced by alcohol. Consequently, the activation of the lipopolysaccharide (LPS) translocation-mediated TLR4 pathway and the subsequent inflammatory response and ROS overproduction in the liver were suppressed. Meanwhile, alcohol-induced gut microbiota dysbiosis was also corrected by TQE. To further investigate the contribution of gut dysbiosis correction to the beneficial effects of TQE on ALD, a fecal microbiota transplantation study was conducted. TQE-manipulated gut microbiota transplantation markedly counteracted the alcohol-induced gut dysbiosis in the recipient mice. In parallel with gut dysbiosis correction, liver damage was partly ameliorated in the recipient mice. Gut barrier dysfunction, endotoxemia, TLR4 pathway induction as well as downstream inflammatory response and ROS overproduction were also partly suppressed due to gut dysbiosis correction in alcohol-fed recipient mice. In summary, these results suggest that gut dysbiosis correction contributes to the hepatoprotective effects of TQE against alcohol through the gut-liver axis.


Subject(s)
Dysbiosis/drug therapy , Liver Diseases, Alcoholic/prevention & control , Plant Extracts/pharmacology , Protective Agents/pharmacology , Thymus Plant/chemistry , Animals , Dysbiosis/metabolism , Ethanol/adverse effects , Fecal Microbiota Transplantation/methods , Gastrointestinal Microbiome/drug effects , Lipopolysaccharides/metabolism , Liver/metabolism , Liver Diseases, Alcoholic/metabolism , Liver Diseases, Alcoholic/pathology , Male , Mice , Mice, Inbred C57BL , Reactive Oxygen Species/metabolism , Toll-Like Receptor 4/metabolism
20.
Phytomedicine ; 91: 153673, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34416627

ABSTRACT

BACKGROUND: Thymus quinquecostatus Celak. has been widely used as a spice and a folk medicine for relieving exterior syndrome and alleviating pain in China. PURPOSE: To explore the protective effects and the underlying mechanism against cerebral ischemia-reperfusion injury (CIRI) of the T. quinquecostatus combining with its chemical composition. STUDY DESIGN AND METHODS: High-polar extract (HPE) was extracted from T. quinquecostatus and polyphenols in HPE were enriched to obtain polyphenol-rich fraction (PRF) using Macroporous resin. The free radicals and zebrafish embryos were used to compare the antioxidant activities of HPE and PRF in vitro and in vivo. Then, the transient middle cerebral artery occlusion (tMCAO) model was established in rats. Neurological deficit score, infarction rate, morphology and apoptosis of neurons were examined to investigate the protective effects of PRF on CIRI. The mRNA and protein levels of nuclear factor erythroid 2-related factor 2 (Nrf2) and hemeoxygenase-1 (HO-1) and the activities of downstream antioxidant enzymes in ischemia tissues were determined to clarify the underlying mechanisms. Also, reactive oxygen species (ROS) level in zebrafish embryos were detected after incubation with PRF for a short time (2 h) to investigate whether PRF could directly eliminate free radicals. Finally, chemical composition of PRF were analyzed to investigate the material basis for antioxidant activity and anti-CIRI effect. RESULTS: Compared with HPE, PRF showed stronger antioxidant activities. PRF exhibited obvious protective effects including ameliorating neurological deficit, lowering infarction rate, and improving the cellular morphology in hippocampus CA1 and cortex after tMCAO. TUNEL staining suggested PRF dose-dependently improved the apoptosis of the neurons in ischemic cortex. RT-qPCR and Western Blot results suggested that PRF regulated oxidative stress (OS) via activating the Keap1/Nrf2/HO-1 signaling pathway. Also, PRF could directly scavenge excessive ROS in zebrafish embryos after a short-time PRF incubation. The anti-CIRI effect might be primarily attributed to the abundant polyphenols in PRF, including flavonoids, polymethoxylated flavonoids, flavonoid glycosides, and phenolic acids. CONCLUSION: T. quinquecostatus contains abundant polyphenols and exhibited a good protective effect against CIRI via dual antioxidant mechanisms, providing a reference for further research and application for this plant.


Subject(s)
Antioxidants , Brain Ischemia , Plant Extracts/pharmacology , Reperfusion Injury , Thymus Plant/chemistry , Animals , Antioxidants/pharmacology , Brain Ischemia/drug therapy , Heme Oxygenase-1/metabolism , Kelch-Like ECH-Associated Protein 1/metabolism , NF-E2-Related Factor 2/metabolism , Oxidative Stress , Rats , Reactive Oxygen Species/metabolism , Reperfusion Injury/drug therapy , Signal Transduction , Zebrafish/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...